A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme

نویسندگان

  • Ching-Lin Fan
  • Ming-Chi Shang
  • Bo-Jyun Li
  • Yu-Zuo Lin
  • Shea-Jue Wang
  • Win-Der Lee
چکیده

Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV) exposure and backside-lift-off (BLO) schemes can not only prevent the damage when etching the source/drain (S/D) electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs) exhibit comparable field-effect mobility (9.5 cm²/V·s), threshold voltage (3.39 V), and subthreshold swing (0.3 V/decade). The delay time of an inverter fabricated using the proposed process was considerably decreased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexi...

متن کامل

Teflon/SiO2 Bilayer Passivation for Improving the Electrical Reliability of Oxide TFTs Fabricated Using a New Two-Photomask Self-Alignment Process

This study proposes a two-photomask process for fabricating amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) that exhibit a self-aligned structure. The fabricated TFTs, which lack etching-stop (ES) layers, have undamaged a-IGZO active layers that facilitate superior performance. In addition, we demonstrate a bilayer passivation method that uses a polytetrafluoroethylene...

متن کامل

Development of Masked Photo-polymerization Rapid Prototyping System using Liquid Crystal Display Panel

The purpose of this research is to develop a new Masked Photopolymerization Rapid Prototyping (MPRP) System using liquid crystal displayer (LCD) panel. The design concept of the MPRP system is to use a dynamical photo mask for the layer profile. The layer pattern of the dynamic mask, generated by a thin film transistor liquid crystal displayer (TFT LCD) panel, is calculated from the slicing dat...

متن کامل

A single-mask substrate transfer technique for the fabrication of high-aspect-ratio micromachined structures

In this paper, a single-mask substrate transfer process for the fabrication of high-aspect-ratio (HAR) suspended structures is presented. The HAR silicon structures are fabricated using a deep reactive ion etching (DRIE) technique and then transferred to a glass wafer using silicon/thin film/glass anodic bonding and silicon thinning techniques. The HAR structures are released using self-aligned...

متن کامل

Amorphous InGaZnO Thin Film Transistor Fabricated with Printed Silver Salt Ink Source/Drain Electrodes

Recently, amorphous indium-gallium-zinc-oxide thin film transistors (a-IGZO TFTs) with inkjet printing silver source/drain electrodes have attracted great attention, especially for large area and flexible electronics applications. The silver ink could be divided into two types: one is based on silver nanoparticles, and the other is silver salt ink. Organic materials are essential in the formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014